Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors
نویسندگان
چکیده
This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.
منابع مشابه
Direct Electrical Detection of DNA Hybridization Based on Electrolyte-Gated Graphene Field-Effect Transistor
متن کامل
Edge Effects on the pH Response of Graphene Nanoribbon Field Effect Transistors
We report the pH response enhancement of the electrolyte-gated graphene field effect transistors by controllably introducing edge defects. An average improvement of pH response from 4.2 to 24.6 mV/pH has been observed after downscaling the pristine graphene into graphene nanoribbon arrays with electron beam lithography (EBL) and oxygen plasma. We attribute the improved pH response in graphene n...
متن کاملControl of emergent properties at a correlated oxide interface with graphene.
Electrolyte gating of complex oxides enables investigation of electronic phase boundaries and collective response to strong electric fields. The origin of large conductance modulations and associated emergent properties in such field effect structures is a matter of intense study due to competing contributions from electrostatic (charge accumulation) and electrochemical (crystal chemistry chang...
متن کاملOn the mode of operation in electrolyte-gated thin film transistors based on different substituted polythiophenes
Organic Thin Film Transistors (OTFT), gated through an aqueous electrolyte, have extensively been studied as sensors in various applications. These water-gated devices are known to work both as electrochemical (Organic ElectroChemical Transistor OECT) and field-effect (Organic Field-Effect Transistor OFET) devices. To properly model and predict the response of water-gated OTFT sensors it is imp...
متن کاملConductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor
Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018